
Shipping Safer Container
Runtimes in 2026
Developer-friendly supply chain security with
Chainguard

1

About Me

2

● Staff DevRel Engineer at Chainguard

● Joined in 2022

● Linux, Containers, PHP

What we'll talk about today

1. Why Devs Need to Care

2. Trending Threat Models

3. Mitigating Risks

4. Concrete Dev Actions This Sprint

5. Demo: Migrating to Chainguard Containers

6. Q&A

3

Why devs need to care
Understanding the threat models devs are exposed to

4

Why devs need to care

● Supply chain attacks now target package
managers and ecosystems directly (npm,
Maven, etc.), in addition to OS images

● Devs own Dockerfiles and dependency
manifests – they’re the ones who can fix it

● Recent Incidents that made the news
○ XZ Utils (2024) [link]
○ tj-actions/changed-files GH Action

Compromise (2025) [link]
○ Sha1-Hulud NPM worm (2025) [link]

5
Mandatory XKCD comic

https://www.openwall.com/lists/oss-security/2024/03/29/4
https://unit42.paloaltonetworks.com/github-actions-supply-chain-attack
https://about.gitlab.com/blog/gitlab-discovers-widespread-npm-supply-chain-attack/

XZ Utils / liblzma (2024)
● Malicious tar release introduced by a long-term maintainer (2+ years in project)

● Exploits the SSH service to allow unauthorized access to affected systems (backdoor)

● Compromised build system, obfuscated malicious code only executed with a few

conditions

● Source code not visibly affected on repository

● Could have been catastrophic if not detected early

6

7

8

9

10

tj-actions/changed-files GHA Compromise (2025)
● Popular GitHub Action, at the time used by 23,000+ repositories

● Attackers injected a payload that dumped the CI/CD runner’s memory, exposing

sensitive environment variables and secrets directly to the workflow logs

● Compromised PAT (Personal Access Token) from maintainer used to gain access to

the repo

● Malicious commit merged, new tags released + retroactively updated existing tags to

point to the same poisoned commit

11

12

13

14

Sha1-Hulud second coming (2025)
● Sophisticated worm that weaponized the npm preinstall hook on infected packages
● Harvests credentials from GitHub, npm, AWS, GCP, and Azure and exfiltrate data to

attacker-controlled GitHub repositories
● Auto-infects any other packages maintained by victim
● ~500 packages poisoned (132M+ downloads) and 30,000+ impacted repositories in 72

hours
● Trojanized packages from industry giants like Zapier, Postman, and PostHog spread the

worm
● Features a "dead man's switch" capable of destroying user data if its propagation and

exfiltration channels are severed

15

16

17

18

Trending Threat Models
What to look for in 2026 threat models and how to stay safe

20

Trending Threat Models

● OS Packages
○ Packages compromised at build time (harder to spot)
○ Hijacked Repositories

● GitHub Actions / CI
○ Stolen Personal Access Token (PAT)
○ Tag Hijacking

● Local Dev Environment
○ Compromised dependencies
○ Obscure auto-executable scripts

21

Main Goals: Secret exposure and unauthorized access

Trending Threat Models

● OS Packages
○ Packages compromised at build time (harder to spot)
○ Hijacked Repositories

● GitHub Actions / CI
○ Stolen Personal Access Token (PAT)
○ Tag Hijacking

● Local Dev Environment
○ Compromised dependencies
○ Obscure auto-executable scripts

22

Main Goals: Secret exposure and unauthorized access

"Just a developer"

 y
ou are here

Trending Threat Models: OS Packages
Targeting runtime environments via a poisoned package distribution channel, an
attacker infiltrates a project and introduces obfuscated malicious code that is
triggered only at build time, bypassing source code scans and CI/CD verifications.

23

● Maintainer
○ vet contributors, enforce git signing, run checks for malware

(malcontent)
● Dev use trusted sources and safe base images - where are your

packages coming from? How large is your surface for attack?

How to stay safe Everything can happen at

build time!

Trending Threat Models: GitHub Actions / CI
Attacker gets access to a PAT (personal access token) from a maintainer,
publishes a new version of the Action, points other tags to same
compromised commit. Then, expose secrets in the env.

24

● Maintainer
○ Avoid long-lived credentials! Use Octo-STS to replace PATs with

short-lived tokens
○ use rulesets to stop tags being updated

● Dev use digests instead of tags! Digests are immutable. This is also
valid for container images.

How to stay safe

https://github.com/apps/octo-sts
https://docs.github.com/en/repositories/configuring-branches-and-merges-in-your-repository/managing-rulesets/available-rules-for-rulesets

Trending Threat Models: Local Dev Environment
Attacker injects malicious code in popular ecosystem library; code is
triggered in automated execution (such as pre-install hook) at the
developer's host, may download additional payload to steal secrets in ENV
variables and configuration files.

25

● Maintainer all previous precautions
● Dev containerize everything! The risk is immense if you're running

your dev environment directly on your host machine. Use safe base
images to mitigate risk of container escape. Use safe package
sources to mitigate risk of build-time tampering.

How to stay safe

Mitigating Risks
Recap: strategies to mitigate software supply chain risks as a developer

26

Containers are the New Runtime
● Everything is containers now!

○ Still, containers are not safe by default

● Pain points with generic images:

○ Bloated images, persistent CVEs, random "official"

images, insecure defaults

○ Developers will literally run any base image

● Chainguard Containers:

○ Minimal base images with low-to-zero CVEs

○ Secure-by-default (non-root, locked-down)

● Dockerfile swap → smaller images, fewer vulns

27

Handling Dependency Chaos
● Most risk lives in libraries / transitive dependencies

● Public registries = uncurated, unpredictable, hard to audit

● Chainguard Libraries:

○ Eliminate threats at build and distribution

○ Curated, continuously rebuilt package feeds (Python,

Java, and Javascript)

○ Signed artifacts, strong provenance; compatible with

existing tooling (pip, npm, etc.)

○ Same dev UX; safer default sources for dependencies

○ Prevention of pre and post install scripts

28

Locking Down CI / CD
● Automated workflows introduce obfuscated risks

○ Pin GitHub Actions and container images to a digest

instead of a tag

○ Ban PATs from your organization

○ Use malware scanners when appropriate

○ Establish rulesets and other controls in your

repository to protect branches and tags

● Containerized environments need frequent updates

○ Use a tool such as Digestabot or Renovate to update

digests and dependencies

29

Protecting your Cluster with Policy as Code
● Move from opaque security gates → clear, codified rules

● Policy engines ensure only trusted workloads actually run

● Use OSS policy engines (e.g., OPA/Gatekeeper, Kyverno) to:

○ Restrict registries/sources

○ Disallow :latest tag

○ Require signatures/labels tied to SBOMs

● Start in audit/monitor mode; later enforce

30

Concrete Dev Actions
This Sprint
What you can do now with the least amount of friction

31

Concrete Dev Actions This Sprint
● Audit your containerized workloads

○ Grype scan for CVEs

○ Check image size / dependencies (attack surface)

○ Look for insecure defaults (image runs as root, outdated builds, not pinned by

digest)

● Choose one workload / Dockerfile and:

○ Use DFC to migrate to a Chainguard Image

● Capture:

○ Image size change

○ CVE reduction

32

https://edu.chainguard.dev/chainguard/migration/dockerfile-conversion/

Demo
Migrating to Chainguard Containers

33

34

JANUARY 6 @ 1PM ET

15-Minute Live Demo of
Chainguard Libraries
Speakers: Ross Gordon & Angela Zhang

How Chainguard Libraries Protects You From
Shai-Hulud and the Next Wave of Open Source
Malware

35

JANUARY 14 @ 1PM ET

Proactive Open Source
Library Management
Speaker: Manfred Moser

Join a deep dive into how attackers are
inserting thrates into open source libraries and
how Chainguard Libraries prevents them
before they enter your environment.

Q&A
chainguard.dev

36

Thank you!
chainguard.dev

37

